jueves, 12 de diciembre de 2013

(III) ¿Cómo empezar a construir y programar robots?

Herramientas de programación de Arduino, Mindstorms y Bioloid


Tanto Lego Mindstorms como Bioloid de Robotis incluyen herramientas de programación gráfica (se utilizan iconos en lugar de únicamente escribir texto) y Arduino utiliza un editor de texto para los programas. Todos ellos permiten crear el ejecutable y enviarlo al controlador.

Entorno Arduino:

Además del entorno de programación donde editar los programas Arduino ofrece un conjunto de librerías que facilitan mucho la utilización de sensores, servos y otros dispositivos. Muchas de estas librerías para modelos de sensores concretos o servos  ya vienen incorporadas, otras se han de incluir manualmente.

En el editor se escribe el programa utilizando C o C++ (dos potentes, flexibles y muy utilizados lenguajes estándares, especialmente en robótica). El entorno de Arduino, tras unas pequeñas transformaciones, lo compila utilizando el compilador avr-gcc o avr-g++, generando el ejecutable que enviaremos al microcontrolador.

Todo lo que aprendemos de C y/o C++ nos será muy útil, pues se puede utilizar con todos los kits, robots, sistemas operativos y computadores. Y estaresmos, además, aprendiendo la forma de trabajar y herramientas habituales en programación.
ArduinoIDE

Lego Mindstorms NXT-G:

Es ideal para familiarizarse con Mindstorms y para pequeños programas, así como para las primeras pruebas que realicemos con un sensor u otro dispositivo nuevo.

Pero es exclusiva para Mindstorms, bastante fácil de utilizar para programas sencillos, pero, a medida que queramos desarrollar programas con un poco de complejidad, iremos descubriendo problemas y limitaciones (búsquedas en el programa, organizar modularmente, depuración de errores, guardar versiones y poderlas comparar)
NXT-G_EV3

Robotis Roboplus Tasks: (la ayuda, de momento, sólo está en inglés)

Se puede decir exactamente lo mismo que para Mindstorms NXT-G: Fácil de utilizar e ideal para empezar o para programas pequeños y pruebas, pero exclusiva para robots de (en este caso) Robotis. Adoleciendo de los mismos defectos, si queremos realizar programas con un mínimo de complejidad nos encontraremos con los mismos problemas.

Sólo añadiría que mi impresión es que está pensada para escribir pequeños programas que recojan los comandos mandados por el telemando y ejecuten las secuencias de movimiento creadas con Roboplus Motion (la otra utilidad básica de Robotis).
RoboplusTaks

¿A qué me refiero con un poco más de complejidad?


Retomando la propuesta de comportamiento del primer artículo de la serie podemos ver una progresión de menos a más complejidad, de forma progresiva.

El típico vehículo que hacemos que evite obstáculos mediante dos sensores de contacto (ultrasonidos o infrarojos), uno a la derecha y otro a la izquierda.

1.- El programa más sencillo simplemente evita los obstáculos girando unos pocos grados a la izquierda cuando detecte una "colisión" en el sensor derecho, y a la izquierda cuando la detecte en el sensor derecho.

2.- Intentar evitar el obstáculo con las mínimas maniobras posibles, dando el mínimo rodeo,  para seguir el rumbo previo.

Pero si el robot se nos acaba situando en un rincón o en un "callejón sin salida" (ha de girar 180 grados o salir marcha atrás) lo más probable es que nunca logre salir por sus propios medios de ahí, ya que irá de "rebotando" del lado izquierdo al derecho y viceversa hasta que se le agoten las baterías...

3.- Añadimos un poco de "inteligencia" y complejidad. En lugar de girar siempre unos determinados grados fijos vamos a hacer que cuando detecte cierta cantidad de colisiones seguidas (en determinada cantidad de milisegundos o segundos) aumente el número de grados que girará, para así acabar consiguiendo que salga del rincón o del "callejón".

4.- Ahora el problema es que tras salir del rincón o del "callejón" cuando detecte un obstáculo va a girar mucho más de lo necesario. Pues igual que se lo dimos, grados de más a girar, se lo quitamos; a medida que pasan determinados milisegundos o segundos sin detectar colisiones iremos disminuyendo los grados a girar hasta que lleguen al valor inicial.

Realmente sólo estamos utilizando dos sensores de contacto, medición del tiempo y contador de colisiones, pero ya no es ese sencillo programa inicial.

5.- Otro grado de complejidad, o probablemente más de un grado, sería añadir un sensor de luz que hiciera al robot tender hacia la fuente de luz más intensa, evitando los obtáculos del camino, claro.

A partir de este nivel de complejidad creo que utilizar la herramientas NXT-G o Roboplus Tasks requiere más esfuerzo y nos aparecerán más problemas que utilizando lenguajes estándares como Java, C o C++, así como sus herramientas asociadas.

Creo que una buena continuación serían estos artículos de introducción a la programación

martes, 10 de diciembre de 2013

(II) ¿Cómo empezar a construir y programar robots?

Resumen del anterior artículo


Antes de empezar con la programación resumamos las conclusiones del anterior artículo:

1.- Los conocimientos mínimos para empezar a construir un robot los tiene prácticamente todo el mundo o se pueden conseguir muy fácilmente:

+ electrónica o electricidad (aunque sólo sea saber distinguir voltaje e intensidad),

+mecánica (lo mínimo sería atornillar y destornillar o conectar piezas tipo Lego)

+informática (saber ejecutar un programa en un ordenador)

2.- Un kit basado en Arduino, Lego Mindstorms o Bioloid de Robotis es la forma más fácil, divertida y educativa de empezar.

¿Arduino, Mindstorms o Bioloid?


¿Por dónde queremos empezar y qué kit nos lo ofrece?

- Si queremos construir robots articulados que caminen con dos, cuatro o seis patas Bioloid es ideal, especialmente si además queremos centrarnos en programación.


- Si lo que queremos es construir distintos vehículos con ruedas o cadenas, utilizando distintos sensores para percibir el mundo, Lego Mindstorms es la mejor opción.


- Y si queremos centrarnos en la electrónica y/o programación sin gastar demasiado dinero Arduino o un kit basado en Arduino es nuestra mejor opción.

Empecemos por el kit más barato, kit Arduino. Porque, además, lo que aprenderemos con él nos servirá también para otros kits, especial, aunque no únicamente, respecto programación en C y C++.

Kit con base Arduino


[caption id="attachment_2229" align="alignleft" width="90"]Controlador Arduino Controlador Arduino[/caption]

Arduino, explicado de forma sencilla, es un controlador programable de sensores y motores, que

[caption id="attachment_2226" align="alignright" width="150"]Arduino robot Robot Arduino 66€[/caption]

podemos utilizar como "cerebro" de un robot. Podemos empezar consiguiendo un controlador Arduino y posteriormente el resto de elementos.

O bien, conseguir el controlador con un kit que incluya ya todos los elementos necesarios para construir un vehículo robot. Con el kit nos aseguramos que motores, sensores y piezas de la

[caption id="attachment_2242" align="alignleft" width="90"]Robot arduino 40€ Robot arduino 40€[/caption]

estructura encajarán y se conectarán correctamente, probablemente también nos resulte más barato. En cualquiera de ambos casos terminaremos programando el microcontrolador que incorpora Arduino. Pero Arduino no es sólo hardware, es también un conjunto de utilidades que nos facilitarán muchísimo el trabajo de programar. Y existe además una comunidad muy activa de usuarios donde podremos participar recibiendo y dando ayuda a otras personas.

Guía, ejemplos y manual


Existe bastante documentación en castellano, aquí la referencia a las principales sentencias y funciones y este fantástico manual en castellano creado por Ardumanía. Pero aún hay más:

- Conceptos básicos y ejemplos

- Guía de instalación y ejecución de primer ejemplo para Windows

Bien, ¿y cómo es en programa sencillo con el lenguaje de programación C?, así se hace parpaderar un LED:

[sourcecode language="c"]
/*
Parpadeo
Enciende durante un segundo un LED,y lo apaga durante otro segundo, así continuamente
 */

// Pin 13 está conectado a un LED en la mayoría de Arduinos
// asignamos en número de conector pin a la variable led:
int led = 13;

// la función setup se ejecuta una sola vez cuando pulsas reset
void setup() {
  // inicializ el conector pin digital como salida.
  pinMode(led, OUTPUT);
}

// la función loop (bucle) se ejecuta una vez tras otra contínuamente
void loop() {
  digitalWrite(led, HIGH);   // enciende LED (HIGH es nivel alto de voltaje)
  delay(1000);               // espera un segundo
  digitalWrite(led, LOW);    // apaga el LED bajando el voltaje; LOW, significa bajo
  delay(1000);               // espera un segundo
}

[/sourcecode]

¿Y C++? ¿Y las herramientas de programación que incluyen Robotis, RoboPlus Taks, y Lego Mindstorms, NXT-G? También, pero ya será en el siguiente artículo...

lunes, 25 de noviembre de 2013

¿Cómo empezar a construir y programar robots?

[caption id="attachment_2192" align="alignleft" width="213"]Honda Asimo Honda Asimo[/caption]

Introducción


Crear robots requiere una gran cantidad de conocimientos distintos y, dependiendo de lo sofisticado que sea el comportamiento o tareas que ha de realizar, puede ser realmente complejo y extremadamente difícil.

Los tres pilares fundamentales de la robótica son la electrónica, la mecánica y la informática; tiene otros, pero con estos tres ya podemos empezar a experimentar.

Además de conocimiento aplicable también necesitamos algunos elementos de los que partir, como motores (u otros actuadores), sensores, una computadora de pequeño tamaño, para evitar peso y consumo eléctrico, (habitualmente una SBC o microcontrolador) y una fuente de energía (batería para que sea autónomo) y algunas piezas que sustenten y mantengan unidos a todos estos elementos en sus movimientos y desplazamientos.

Estos elementos los podemos adquirir (algunos incluso fabricar)  por separado o, para facilitar la entrada a la róbótica, también los podemos adquirir de forma conjunta, como un kit.

Comparte en este foro tus dudas y comentarios

¿Qué necesito para empezar?


Sobre todo, ganas de disfrutar creando y aprendiendo.

* Adquirir unos mínimos y básicos conocimientos de:

+ electrónica o electricidad (aunque sólo sea saber distinguir voltaje e intensidad),

+mecánica (lo mínimo sería atornillar y destornillar o conectar piezas tipo Lego)

+informática (saber ejecutar un programa en un ordenador)

* Conseguir, al menos, microcontrolador (Arduino, por ejemplo), un par de motores, un sensor de distancias, unas pilas, cables y una estructura que lo soporte. El conjunto o kit básico.

Un kit, la mejor opción


Una clara ventaja de empezar con un kit es que puedes empezar YA y dedicarte a la parte fundamental (electrónica, mecánica o informática) que más te interese, porque las demás las tienes ya solucionadas; aunque en cualquier momento puedes ponerte a trabajar en cualquiera de las otras partes. Al comprar el kit, con todo el conjunto de elementos necesarios juntos, el precio además suele ser más barato.

Del más caro y complejo al más barato y sencillo

bioloid_bio_img01Bioloid: 18 potentes servomotores, 4 sensores. Ideal para humanoides, cuadrúpedos, hexápodos e incluso vehículos, y crearles software para que se comporten como seres vivos. Incluye software de programación Roboplus Tasks, también se puede programar en C, y de creación de movimientos Roboplus Motion.

Tiene un precio de unos 1000 euros. Sí, resulta algo caro, pero si dispones del dinero y de suficientes conocimientos de programación o ganas de aprender, creo que lo merece.

[caption id="attachment_76" align="alignleft" width="90"]NXT Acer Explorer con Acer NXT Acer Explorer con Acer[/caption]

Mindstorms: 2 servomotores, 1 motor, 4 sensores. Ideal para mecanismos y vehículos. Muy fácil de utilizar, pero también permite crear robots complejos. Incluye software de programacion NXT-G y, NXT es posible programarlo también en Java con Lejos y C/C++ con Osek, aún no disponible para EV3 o versiones muy preliminares.

Tiene un precio de unos 300 euros, aunque pueda parecer caro frente a otras opciones, su enorme potencial y flexibilidad en todos los aspectos (de construcción, programación y de ampliar su electrónica) lo hacen enormemente interesante.

 

[caption id="attachment_2226" align="alignleft" width="90"]Arduino robot Robot Arduino[/caption]

Vehículo basado en Arduino: 2 servomotores y los sensores con los que desees empezar. Es el más sencillo y barato, por unos 40-60 euros puedes tener lo mínimo. Ideal para profundizar en electrónica.

Se puede programar con el amigable entorno de programación Arduino.

Es el que tiene un precio más barato y que además lo puedes ir comprando por partes, a medida que vayas necesitándolas. No ofrece tanta flexibilidad como Mindstorms ni capacidad para crear robots articulados como Bioloid, pero realmente se puede aprender mucho más de lo que pueda parecer.

.

¿Y con menos dinero o sin dinero?

Por menos dinero puedes conseguir un microcontrolador tipo Arduino o sus clones, que cuestan poco más de 20 euros.

O, de forma totalmente gratuita, puedes empezar a aprender a programar en C o C++, que será muy útil para luego darle vida al robot.

¿Con qué robot empezar?


Un sencillo vehículo de dos ruedas tractoras y una libre es un buen punto de partida con el que empezar a divertirse aprendiendo.

A modo de sugerencia de un programa sencillo y cómo ir añadiéndole una mínima complejidad de comportamiento. Se puede hacer de muchísimas formas:

El típico vehículo que hacemos que evite obstáculos mediante dos sensores de contacto, uno a la derecha y otro a la izquierda.

1.- El programa más sencillo simplemente evita los obstáculos girando unos pocos grados a la izquierda cuando detecte una "colisión" en el sensor derecho, y a la izquierda cuando la detecte en el sensor derecho.

2.- Se intenta evitar el obstáculo con las mínimas maniobras posibles para seguir el rumbo establecido.

Pero si el robot se nos acaba situando en un rincón o en un "callejón sin salida" (ha de girar 180 grados o salir marcha atrás) lo más probable es que nunca logre salir por sus propios medios de ahí, ya que irá de "rebotando" del lado izquierdo al derecho y viceversa hasta que se le agoten las baterías...

3.- Añadimos un poco de "inteligencia" y complejidad. En lugar de girar siempre unos determinados grados fijos vamos a hacer que cuando detecte cierta cantidad de colisiones seguidas (en determinada cantidad de milisegundos o segundos) aumente el número de grados que girará, para así acabar consiguiendo que salga del rincón o del "callejón".

4.- Ahora el problema es que tras salir del rincón o del "callejón" cuando detecte un obstáculo va a girar mucho más de lo necesario. Pues igual que se lo dimos, grados de más a girar, se lo quitamos; a medida que pasan determinados milisegundos o segundos sin detectar colisiones iremos disminuyendo los grados a girar hasta que lleguen al valor inicial.

Realmente sólo estamos utilizando dos sensores de contacto, medición del tiempo y contador de colisiones, pero ya no es ese sencillo programa inicial.

Otro paso sería añadir un sensor de luz que hiciera al robot tender hacia la fuente de luz más intensa, evitando los obtáculos del camino, claro.

Y en el siguiente artículo...

Empezando a programar


Aprendiendo a programar con Bioloid, Mindstorms o robot basado en Arduino.

miércoles, 20 de noviembre de 2013

(I) Reading sensors connected to Robotis CM-510

cm-510 sensorsUsing the Dynamixel SDK instead of RoboPlus Tasks is not possible to query sensors connected to the CM-5xx controller. But, of course, using standard programming languages, like C++, and tools, line QT Creator or Eclipse, with its full featured IDEs and debuggers is a hugue gain.

So I created a firmware for the CM-510 which can be queried and receive commands to itself, including its sensors, or to Dynamyxel devices.

The idea is very simple:

This program running in the CM-510 receives:

- commands or queries to IDs of Dynamixel devices. These are not processed, only redirected to the Dynamixel bus only if it was received by serial port ( serial cable or zigbee). If it was received from the Dynamixel bus nothing is done.

- commands or queries to the CM-510 ID (I chose ID=200), like beep, or to the sensors connected to it. This commands and queries are processed in the CM-510, basically querying the sensors.

In both cases the answer is sent to the connection from which the query or command was received.

After power on the CM-510, you can select the mode with the 4 cursor keys as showed in a terminal connected to its serial port:

"For 'Toss mode' press (Up), for 'Device mode' (Down), for 'Device debug mode' (Left),to start press (Right)"

In the Device mode:

all the receptions and sends are through the Dynamixel bus, the CM-510 is simply another device.

In the Toss mode:

- what is received from the serial connection is sent to the Dynamixel bus or processed in the CM-510 (If sent to its ID)

-what is received from the Dynamixel bus is sent to the serial connection

Finally, the Debug mode:

is like the Device mode, but all the debug messages included in the CM-510 are sent to the serial connection.

A complete sequence with code snippets from the CM-510 program and from the code running in the other computer:

Some C++ code snippets from this example: (C# in the next post)


[sourcecode language="cpp"]
enum AX12Address //and functions implemented in the CM-510 program, like
{
ReadCM510SensorRaw = 1,
Beep = 8,
ReadCM510SensorFiltered = 4,
SetSensorValuesToFilter = 5,
...
}
[/sourcecode]

[sourcecode language="cpp"]
void doBeep()
{
cout << "Beep" << endl;
mySystem.dynamixelCommunication.sendOrder(100, AXS1_Buzzer, (byte) DO, (short) 500);
usleep (200000);
mySystem.dynamixelCommunication.sendOrder(200,MyCommunications::Beep short)5);
}
[/sourcecode]

Querying sensor:

[sourcecode language="cpp"]
void doQuerySensor()
{
int sensorPort=getSensorPort();
int value=mySystem.dynamixelCommunication.readSensorValue (200,ReadCM510SensorRaw, sensorPort);
cout << "the sensor reads: [" << value << "] " << endl << endl << endl;
}
[/sourcecode]

These command and query are processed in the CM-510:

Getting the sensor value:

[sourcecode language="c"]

int executeCM510Function()
{
...
case F_GET_SENSOR_VALUE_RAW:
values[1] = getSensorValueRaw(parameters[1]);
break;

case F_GET_SENSOR_VALUE_FILTERED:
values[1] = getSensorValueFiltered(parameters[1], sensorValuesToFilterDefined);
break;

case F_GET_TWO_DMS_SENSOR_VALUES:
parametersReceived=3;
getTwoDMSSensorsValues();
break;

case F_GET_MULTIPLE_SENSOR_VALUE:
getMultipleSensorsValues();
break;

case F_DO_SENSOR_SCAN:
values[1]= sensorScan(parameters[1]);
break;

case F_SET_VALUE_DMS1 : //set default value DMS1
DMS1=parameters[1];
break;

case F_SET_VALUE_DMS2 : //set default value DMS1
DMS2=parameters[1];
break;

case F_BEEP:
if (debugMode)
printf("executeCM510Function beep\n");
beep();
break;

case F_SET_SENSOR_VALUES_TO_FILTER:
sensorValuesToFilterDefined=parameters[1];
break;
}

return function;
}

}
...
int getSensorValueRaw(unsigned char portId)
{
ADCSRA = (1 << ADEN) | (1 << ADPS2) | (1 << ADPS1);

setPort(portId);
//PORTA &= ~0x80;
//PORTA &= ~0x20;

//_delay_us(12); // Short Delay for rising sensor signal
_delay_us(24);
ADCSRA |= (1 << ADIF); // AD-Conversion Interrupt Flag Clear
ADCSRA |= (1 << ADSC); // AD-Conversion Start

while( !(ADCSRA & (1 << ADIF)) ); // Wait until AD-Conversion complete

PORTA = 0xFC; // IR-LED Off

//printf( "%d\r\n", ADC); // Print Value on USART

//_delay_ms(50);
_delay_ms(ReadSensorDelayMS);

return ADC;
}

[/sourcecode]

 

[sourcecode language="c"]

void beep()
{
buzzOn(100);
buzzOff();
}
[/sourcecode]

But we can do a little more with the CM-510 processor, we can do some filtering to the sensor values.

The readings from the DMS are usually somewhat erratic, so we can simply:

- discard the minimum and maximum values:

- if we take 5 more than measures, then return the average if the are more than 3, if 3 or less it

Previously we should set how many readings should be done, if not, the default number of readings are 5:

[sourcecode language="c"]
int getSensorValueFiltered(unsigned char portId, int times)
{
...
switch(function)
{
case F_GET_SENSOR_VALUE_RAW:
values[1] = getSensorValueRaw(parameters[1]);
break;

case F_GET_SENSOR_VALUE_FILTERED:
values[1] = getSensorValueFiltered(parameters[1], sensorValuesToFilterDefined);
break;

case F_GET_TWO_DMS_SENSOR_VALUES:
parametersReceived=3;
getTwoDMSSensorsValues();
break;

case F_GET_MULTIPLE_SENSOR_VALUE:
getMultipleSensorsValues();
break;

case F_DO_SENSOR_SCAN:
values[1]= sensorScan(parameters[1]);
break;

case F_SET_VALUE_DMS1 : //set default value DMS1
DMS1=parameters[1];
break;

case F_SET_VALUE_DMS2 : //set default value DMS1
DMS2=parameters[1];
break;

case F_BEEP:
if (debugMode)
printf("executeCM510Function beep\n");
beep();
break;

case F_SET_SENSOR_VALUES_TO_FILTER:
sensorValuesToFilterDefined=parameters[1];
break;
}
...
[/sourcecode]

We also can take values from multiple sensors with one query, but It will be explained in the next post...

Forums opened

As l wrote in this previous post I would like to improve your participation in this site, and, in general, the interactions between all the people who visit this forum.

So I have opened some forums to post doubts, questions, comments, suggestions or opinions about the publushed posts.

Already there are some questions and answers!

miércoles, 13 de noviembre de 2013

Creating behaviors (I)

As you may guess from the domain of this site, software souls, one of my principal interests in robotics is creating behaviors, to make robots act as if they were alive. And here comes software. But I separate two aspects, because I think that to create the behavior just coding is too much complex, even for seasoned developers, and, worse, is too much rigid and difficult to change:

- The software to create, define or configure the behavior (the same way animations are created with specific software, and even hardware, tools)

- The software embedded in the robot to control it "executing" the behavior

In addition, if we can create a really easy to use tool to define and configure behaviors, not only developers could create behaviors, but anyone that could use a computer.

This post is focused in the software embedded in the robot and the two inputs that it will receive from the behavior creator: the behavior specification. The next diagram try to show the main parts:

[caption id="attachment_2136" align="alignleft" width="300"]Creating behaviors Creating behaviors[/caption]

The embedded robot software have four main components and two interfaces:

- A configurable  behavior event generator that will be arising, internally or externally triggered, needs, wishes, and other action driving "behavior events"

- The sensor perception component that receive and process the information from the robot environment

- The motion component that control the robot motion.

- The coordination component that organize all the information to generate the movements showing its behavior.

The two interfaces uncouple the event generator from the perception and motion.

The user could use the default configuration or adjust it  to change different aspects related to its behavior, perception or motion. Just using this configuration it will act stand-alone, based on the configuration and its environment. If we want it to do any specific tasks or tasks we should supply a DSL based specification of the tasks, that will be executed but conditioned by the configured behavior.

lunes, 29 de julio de 2013

(I) Programming serial port communications

250px-Serial_portConnections and operating system symbolic names

A serial port is a communication physical interface through which information  transfers in or out one bit at a time (in contrast to a parallel port) being, more or less compliant, with the RS-232 standard.

But serial port communications aren't only useful for wired DE-9 connectors. it also allows us to use it with USB (ftdi), Bluetooth (serial profile) and Zigbee using virtual serial ports.

·

Types-usbSerial and virtual serial ports appear as  COMx in Windows operating systems (COM1, COM2, ...) andin UNIX/Linux as ttySx or ttyUSBx or even ttyACMx (ttyS0, ttyS1, ttyUSB0, ttyUSB1, ttyACM0, ttyACM1,...).

For programming purposes we usually want to communicate computers with others computers, microcontrollers or other devices like GPS, LED or LCD displays.

·

Serial port programming in C/C++, Windows and Linux

Using the serial port is a lot  easier, but sometimes tricky. The basic commands are to open a connection, read and write over this connection and, finally, tom close it, better if using the C++ RAII idiom.

winWindows commands:
Here you can find a complete C++ for Windows example.

With these next two definitions (among others needed):

HANDLE
serialPortHandle
wchar_t* device

serialPortHandle = CreateFile(device, GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, NULL, NULL);


if (serialPortHandle!=INVALID_HANDLE_VALUE)
ReadFile(serialPortHandle, buffer, len, &read_nbr, NULL);

...
if (serialPortHandle!=INVALID_HANDLE_VALUE)
WriteFile(serialPortHandle, buffer, len, &result, NULL);


CloseHandle(serialPortHandle);

linuxUnix/Linux commands:
Here you can find a complete C++ for Linux example.

With these two definitions:
·

int fileDescriptor;

char *device;


·

·


  • Opening a connection, open


struct termios terminalAttributes;

fileDescriptor = open(device, O_RDWR | O_NOCTTY | O_NDELAY | O_FSYNC );

// clear terminalAttributes data
memset(&terminalAttributes, 0, sizeof(struct termios));

terminalAttributes.c_cflag = B57600 | CS8 | CLOCAL | CREAD;
terminalAttributes.c_iflag = IGNPAR |  ONLCR;
terminalAttributes.c_oflag = OPOST;
terminalAttributes.c_cc[VTIME] = 0;
terminalAttributes.c_cc[VMIN] = 1;

tcsetattr(fileDescriptor, TCSANOW, &terminalAttributes);


int n=read(fileDescriptor, buffer, len);

...
int n=write(fileDescriptor, buffer, len);


  • Closing the connection, close


close(fileDescriptor);

More information:


https://en.wikipedia.org/wiki/Serial_communication
http://en.wikipedia.org/wiki/Serial_port

http://www.lvr.com/serport.htm
http://digilander.libero.it/robang/rubrica/serial.htm
http://en.wikibooks.org/wiki/Serial_Programming

http://msdn.microsoft.com/en-us/library/ff802693.aspx

miércoles, 26 de junio de 2013

(II) C++ crash examples tutorial using Robotis CM-900 board and IDE (II)

In this post I will try to show one important C++ feature, virtual classes as interfaces, defining a rol that several classes can implement. Also

Here you can download the file with the source code.

_2_CM900_CPP_Interfaces

[sourcecode language="cpp"]

// C++ crash tutorial with Robotis CM-900.

// First example: http://softwaresouls.com/softwaresouls/

/*
Classes inheritance and interface creation in C++
*/

// Abstract class as Interface for communication device classes http://www.cplusplus.com/doc/tutorial/polymorphism/
class CommunicationDevice
{
public:
virtual void setup(int baudrate=0)=0; // baudrate=0, default parameter in case is not passed any parameter.
//...)=0; is a pure virtual method that convert the class in abstract http://www.cplusplus.com/doc/tutorial/polymorphism/
//      because is not straight usable , a derived classimpllementing the pure virtual methods must be created
virtual void send(char *message)=0;   // default parameter in case is not passed any parameter.

virtual void send(int i)=0; //Method overloading http://www.cplusplus.com/doc/tutorial/functions2/ Same method name with different parameter types

};

class Zigbee : public CommunicationDevice //inherits the interface a should define the methos to be able to create objects.
{
public:
void setup(int baudrate=0);
void send (char *message);
void send(int i);
};

class USB : public CommunicationDevice //inherits the interface a should define the methos to be able to create objects.
{
public:
void setup(int baudrate=0);
void send (char *message);
void send(int i);
};

class Debug {
CommunicationDevice &commDevice;
public:
Debug(CommunicationDevice &aCommDevice) : commDevice(aCommDevice) {}; // member object commDevice is instantiated by reference to avoid object copy
void show(char *message)
{
commDevice.send(message); // the "commDevice"  method called depends on the object passed to the constructor
}

void show(int i)
{
commDevice.send(i);
}
};

void Zigbee::setup(int baudrate)
{
if (baudrate==0)
baudrate=57600; //only changes local copy, not the variable passed as value parameter http://www.cplusplus.com/doc/tutorial/functions2/
Serial2.begin(baudrate);
}

void Zigbee::send(char *message)
{
Serial2.println(message);
}

void Zigbee::send(int i)
{
Serial2.println(i);
}

void USB::setup(int baudrate)
{
SerialUSB.begin();
}

void USB::send(char *message)
{
SerialUSB.println(message);
}

void USB::send(int i)
{
SerialUSB.println(i);
}

Zigbee zigbee;
USB usb;

const byte NumberOfCommsDevices=2;
CommunicationDevice *commsDevices[]={&usb, &zigbee};
//={usb, zigbee};

void setup()
{
//  Individually:

//  zigbee.setup();
//  usb.setup();

//  collectively. using the common Interface "CommunicationDevice"
for (int i=0;i<NumberOfCommsDevices;i++) commsDevices[i]->setup();
delay(2000); // waiting for 2 seconds, let the user activate the monitor/console window (Control+Shift+M).
}

int counter=0;
void loop()
{
++counter;
Debug debug1(usb); // Debug constructor accepts any class inhereting the Interface "CommunicationDevice", Debug(CommunicationDevice &aCommDevice)
debug1.show("Hola"); //debug object will call the method "send" implemented in the object passed to the constructor. In this case "usb.send"

//Showing the counter for each iteration until the 2000th iteration
if (counter <=2000)
debug1.show(counter);
else
{
// Showing the counter every 100 iterations and waiting for 2 seconds
if (counter%100==0) // Operator modulo http://www.cplusplus.com/doc/tutorial/operators/ (returns the remainder)
{
debug1.show(counter);
delay(2000);
}
}
}

[/sourcecode]

martes, 25 de junio de 2013

Bioloid Workbench Windows C++ examples

This post presents the Windows version of two examples/utilities built, this time, with MS Visual C++ and QT Creator, a great open source IDE and framework.

The first utility has a comand line user interface, being an easy example with only two DLL dependencies to the Visual C++ runtimes.

Screenshot-Terminal

The second example utility has a graphic user interface created with QT Creator.

QTWorkbench

Here you can find the bin executables and the projects with the source code.

This is the main function of the first example, the command line:

[sourcecode language="cpp"]
int _tmain(int argc, _TCHAR* argv[])
{
cout << "AXControl_v2_VS_CPP test v0" << endl;

bool quit=false;
MyBasicSystem::BasicSystem mySystem;
UI ui(mySystem);
do
{
ui.showMenu();
int selected=ui.selectOption();
if (selected==ui.OptionQuit)
quit=true;
ui.executeSelectedOption(selected);
}while (!quit);

mySystem.dynamixelCommunication.close();

return 0;
}
[/sourcecode]

[Update] Yesterday I discovered a subtle but ugly bug. Can you spot it? Send an email to if you can't find it but you want to know the danger bug.

It use two classes, the "BasicSystem" (in the library "VS_CPP_AXControl_lib.lib") and a simple "UI" class that receives the input from the user and use the operations offered by the "BasicSystem" class.

For example:

[sourcecode language="cpp"]
int UI::getPosition()
{
int position=0;

do
{
cout << "Type a value between 0 and 1023 to set the AX-12 in that position" << endl; cin>>position;

}while(!validRange(position, 0, 1023));

cout << "Position:" << position << endl;

return position;
}
...
void UI::doSetPosition()
{
int ax12Id=getId();
int position=getPosition();

mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::GoalPosition,(short) position);
}
[/sourcecode]

And all the cource code:

[sourcecode language="cpp"]
/*------------------------------------------------------------------------------*\
* This source file is subject to the GPLv3 license that is bundled with this *
* package in the file COPYING. *
* It is also available through the world-wide-web at this URL: *
* http://www.gnu.org/licenses/gpl-3.0.txt *
* If you did not receive a copy of the license and are unable to obtain it *
* through the world-wide-web, please send an email to *
* siempre.aprendiendo@gmail.com so we can send you a copy immediately. *
* *
* @category Robotics *
* @copyright Copyright (c) 2011 Jose Cortes (http://www.siempreaprendiendo.es) *
* @license http://www.gnu.org/licenses/gpl-3.0.txt GNU v3 Licence *
* *
\*------------------------------------------------------------------------------*/

#include "stdafx.h"
#include
#include "BasicSystem.h"
#include "Util.h"

using namespace std;

class UI
{
public:
static const int OptionQuit=8;

UI(MyBasicSystem::BasicSystem& aMySystem) : mySystem(aMySystem) {}

void showMenu();
int selectOption();
bool executeSelectedOption(int selected);
void doBeep();

private:
MyBasicSystem::BasicSystem mySystem;

static const int OptionSetLEDOnOff=1;
static const int OptionQueryAX12=2;
static const int OptionMoveAX12=3;
static const int OptionTorqueAX12=4;
static const int OptionQuerySensor=5;
static const int OptionShowMenu=6;
static const int OptionBeep=7;

static const int MinOption=OptionSetLEDOnOff;
static const int MaxOption=OptionQuit;

bool validRange(int value, int MinValue, int MaxValue);
bool nonValidOption(int option);
int getPosition();
int getId();
int getSensorPort();
void doGetPosition();
void doSetPosition();
void doQuerySensor();
void doSetLEDOnOff();
void doSetTorqueOnOff();

};

void UI::showMenu()
{
cout << "V02" << endl;

cout << OptionSetLEDOnOff << ".- Toggle AX-12 LED" << endl;
cout << OptionQueryAX12 << ".- Query AX-12" << endl;
cout << OptionMoveAX12 << ".- Move AX-12" << endl;
cout << OptionTorqueAX12 << ".- Torque AX-12" << endl;
cout << OptionQuerySensor << ".- Query CM-510 sensor" << endl;
cout << OptionShowMenu << ".- Show menu" << endl;
cout << OptionBeep << ".- Beep" << endl;
cout << OptionQuit << ".- Quit" << endl;
}

bool UI::nonValidOption(int option)
{
return (optionMaxOption);
}

int UI::selectOption()
{
int option=-1;

while (nonValidOption(option))
{
cout << "Select option (" << MinOption << "-" << MaxOption << ")" << endl; cin >> option;
if (nonValidOption(option))
{
cout << endl;
cout << endl;
cout << "(" << option << ") is NOT a valid option" << endl; } } return option; } bool UI::validRange(int value, int MinValue, int MaxValue) { return (value>=MinValue && value<=MaxValue);
}

int UI::getPosition()
{
int position=0;

do
{
cout << "Type a value between 0 and 1023 to set the AX-12 in that position" << endl; cin>>position;

}while(!validRange(position, 0, 1023));

cout << "Position:" << position << endl; return position; } int UI::getId() { int ax12Id=1; do { puts ("Type the ID of the AX-12 to use, a value between 1 and 18, "); cin >> ax12Id;

}while(!validRange(ax12Id, 1, 18));

cout << "AX12 Id:" << ax12Id << endl; return ax12Id; } int UI::getSensorPort() { int sensorPort=1; do { puts ("Type the sensor Port to read, a value between 1 and 6, "); cin >> sensorPort;

}while(!validRange(sensorPort, 1, 6));

cout << "Sensor Port number:" << sensorPort << endl;

return sensorPort;
}

void UI::doBeep()
{
cout << "Beep" << endl;
mySystem.dynamixelCommunication.sendOrder(100, AXS1_Buzzer, (byte) DO, (short) 500);
Sleep (2);
mySystem.dynamixelCommunication.sendOrder(200, MyCommunications::Beep, (byte) 5);
}

void UI::doGetPosition()
{
int ax12Id=getId();

int position = mySystem.dynamixelCommunication.readValue(ax12Id, MyCommunications::PresentPosition);
cout << "the position is: [" << position << "] " << endl << endl << endl;
}

void UI::doSetPosition()
{
int ax12Id=getId();
int position=getPosition();

mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::GoalPosition,(short) position);
}

void UI::doQuerySensor()
{
int sensorPort=getSensorPort();

int value=mySystem.dynamixelCommunication.readSensorValue (200, ReadCM510SensorRaw, sensorPort);
cout << "the sensor reads: [" << value << "] " << endl << endl << endl;
}

void UI::doSetLEDOnOff()
{
byte lByte=0, hByte=0;
int ledValue;

int ax12Id=getId();

ledValue=mySystem.dynamixelCommunication.readValue(ax12Id, MyCommunications::LED);
Hex::toHexHLConversion(ledValue, hByte, lByte);

bool onOff=false;
if (lByte!=0)
onOff=true;

cout << "The LED is: [" << (onOff?"on":"off") << "], putting it: [" << (onOff?"Off":"on") << "] " << endl << endl << endl;
mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::LED, byte(onOff?0:1));
}

void UI::doSetTorqueOnOff()
{
byte lByte=0, hByte=0;
int ax12Id=getId();

int torque=mySystem.dynamixelCommunication.readValue(ax12Id, MyCommunications::Torque);
Hex::toHexHLConversion(torque, hByte, lByte);
bool onOff=(lByte!=0?true:false);

cout << "The Torque is: [" << (onOff?"on":"off") << "], putting it: [" << (onOff?"Off":"on") << "] " << endl << endl << endl;

mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::Torque,(byte) (onOff?0:1));
}

bool UI::executeSelectedOption(int option)
{
bool isOk=true;
cout << endl;
cout << endl;

cout << "Selected option: [" << option << "] " << endl; switch(option) { case OptionSetLEDOnOff: doSetLEDOnOff(); break; case OptionQueryAX12: doGetPosition(); break; case OptionMoveAX12: doSetPosition(); break; case OptionTorqueAX12: doSetTorqueOnOff(); break; case OptionQuerySensor: doQuerySensor(); break; case OptionShowMenu: showMenu(); break; case OptionBeep: doBeep(); break; } return isOk; } [/sourcecode]

The code for the Qt version is more complex, but as an example, the same operation that the example for the command line:

[sourcecode language="cpp"] int MainWindow::getAX12_1_Id() { // Get the value from the edit control for the first AX-12 QString qStr=ui->SB_AX12_1_ID->text();
int id=Util::convertToInt(qStr.toStdString());

return id;
}
...
void MainWindow::on_B_AX12_1_SET_POS_clicked()
{
int id = getAX12_1_Id();

// Get the target position from the UI edit control as string and a convert it to int
short position= ui->SB_AX12_1_POS->text().toInt();

// Send the order to the AX-12 with the "id" to go to "position"
pDynComm->sendOrder(id, MyCommunications::GoalPosition,position);
}
[/sourcecode]

domingo, 23 de junio de 2013

Arduino C++ crash examples tutorial using Duemilanove (I)

This is the first example in a serie of cheap (absolutely free and cheap) articles to get some basic and practical C++ knowledge. It will references the great explanations provided at www.cplusplus.com C++ tutorial. Using Arduino Duemilanove (well, really it's a Funduino).

Here you can download The file with the code, and you can find links to a lot of free tutorials, courses and books to learn C++ here.


[sourcecode language="cpp"]
// C++ crash tutorial with Arduino Duemilanove.

// First example: http://softwaresouls.com/softwaresouls/2013/06/23/c-crash-tutorial-using-robotis-cm-900-board-and-ide-i/

/*
Hello World shows messages on construction and destruction
Also it lets you to salute.
Showing always its assigned identifiction number MyId
*/
class HelloWorld
{
private:
int myId; //Object identification num ber

public:

// class constructor http://www.cplusplus.com/doc/tutorial/classes/
HelloWorld(char *message, byte id)
{
myId=id;
Serial.print(message);
printId();
}

// class destructor http://www.cplusplus.com/doc/tutorial/classes/
~HelloWorld()
{
Serial.print ("Destructing object: ");
printId();
}

void printId()
{
Serial.print(" ID:");
Serial.println(myId);
Serial.println(" ");
}

void Salute(char *name)
{
Serial.print("Hi!, ");
Serial.println(name);
Serial.print("Regards from object: ");
printId();
}
};

/*
void setup() function it's only executed one time at the start of the execution.
It is called from a hidden main() function in the Ronbotis CM-900 IDE core.

\ROBOTIS-v0.9.9\hardware\robotis\cores\robotis\main.cpp
Note: "while (1)" is a forevr loop ( http://www.cplusplus.com/doc/tutorial/control ):

(Basic structure http://www.cplusplus.com/doc/tutorial/program_structure/)

int main(void) {
setup();

while (1) {
loop();
}
return 0;
}
*/
void setup()
{
Serial.begin(57600); //initialize serial USB connection
delay(3000); //We will wait 3 seconds, let the user open (Control+Shift+M) the Monitor serial console
}

//We will not see neither the construction nor the destruction of this global object because serial port it's not still initiated
HelloWorld hw0("construction object", 0); //Object construction http://www.cplusplus.com/doc/tutorial/classes/

// A counter to see progress and launch events
int iterationCounter=0; //An integer variable to count iterations http://www.cplusplus.com/doc/tutorial/variables

// void loop() will be executing the sentences it contains while CM-900 is on.
void loop()
{
// Lets's show only the first 5 iterations http://www.cplusplus.com/doc/tutorial/control/
if (iterationCounter<5)
{
Serial.print("starting iteration #");
Serial.println(++iterationCounter); // firts, iterationCounter is incremented and then printed

// We will see the consttructiona and destruction messages from this local (inside the loop function) object. Object construction http://www.cplusplus.com/doc/tutorial/classes/
HelloWorld hw1("constructing object", 1);
hw1.Salute("Joe");

if (iterationCounter==3)
{
// We will see the consttruction and destruction messages from this local (inside the "if" block inside the "loop" function) object. Objet construction http://www.cplusplus.com/doc/tutorial/classes/
HelloWorld hw2("constructing object", 2);
hw2.Salute("Jones");
} // Objet hw2 destruction http://www.cplusplus.com/doc/tutorial/classes/

//Let's show that object hw0 is alive
hw0.Salute("Pepe");

Serial.print("ending iteration #");
Serial.println(iterationCounter++); // first cpunter is printed, then incremented.
} // Objet hw1 destruction http://www.cplusplus.com/doc/tutorial/classes/
} // Program end. Objet hw0 destruction http://www.cplusplus.com/doc/tutorial/classes/
[/sourcecode]

(I) Robotis CM-900 C++ crash examples tutorial

This is the first example in a serie of cheap (absolutely free and cheap) articles to get some basic and practical C++ knowledge. It will references the great explanations provided at www.cplusplus.com C++ tutorial. And using the very cheap and opensource (about 20$/€) Robotis 32 bits microcontroller board CM-900 (STM32 based) and Arduino based IDE.

Here you can download the file with the code, and you can find links to a lot of free tutorials, courses and books to learn C++ here.


[sourcecode language="cpp"]
// C++ crash tutorial with Robotis CM-900.

// First example: http://softwaresouls.com/softwaresouls/2013/06/23/c-crash-tutorial-using-robotis-cm-900-board-and-ide-i/

/*
Hello World shows messages on construction and destruction
Also it lets you to salute.
Showing always its assigned identifiction number MyId
*/
class HelloWorld
{
private:
int myId; //Object identification num ber

public:

// class constructor http://www.cplusplus.com/doc/tutorial/classes/
HelloWorld(char *message, byte id)
{
myId=id;
SerialUSB.print(message);
printId();
}

// class destructor http://www.cplusplus.com/doc/tutorial/classes/
~HelloWorld()
{
SerialUSB.print ("Destructing object: ");
printId();
}

void printId()
{
SerialUSB.print(" ID:");
SerialUSB.println(myId);
SerialUSB.println(" ");
}

void Salute(char *name)
{
SerialUSB.print("Hi!, ");
SerialUSB.println(name);
SerialUSB.print("Regards from object: ");
printId();
}
};

/*
void setup() function it's only executed one time at the start of the execution.
It is called from a hidden main() function in the Ronbotis CM-900 IDE core.

\ROBOTIS-v0.9.9\hardware\robotis\cores\robotis\main.cpp
Note: "while (1)" is a forevr loop ( http://www.cplusplus.com/doc/tutorial/control ):

(Basic structure http://www.cplusplus.com/doc/tutorial/program_structure/)

int main(void) {
setup();

while (1) {
loop();
}
return 0;
}
*/
void setup()
{
SerialUSB.begin(); //initialize serial USB connection
delay(3000); //We will wait 3 seconds, let the user open (Control+Shift+M) the Monitor serial console
}

//We will not see neither the construction nor the destruction of this global object because serial port it's not still initiated
HelloWorld hw0("construction object", 0); //Object construction http://www.cplusplus.com/doc/tutorial/classes/

// A counter to see progress and launch events
int iterationCounter=0; //An integer variable to count iterations http://www.cplusplus.com/doc/tutorial/variables

// void loop() will be executing the sentences it contains while CM-900 is on.
void loop()
{
// Lets's show only the first 5 iterations http://www.cplusplus.com/doc/tutorial/control/
if (iterationCounter<5)
{
SerialUSB.print("starting iteration #");
SerialUSB.println(++iterationCounter); // firts, iterationCounter is incremented and then printed

// We will see the consttruction and destruction messages from this local (inside the loop function) object. Object construction http://www.cplusplus.com/doc/tutorial/classes/
HelloWorld hw1("constructing object", 1);
hw1.Salute("Joe");

if (iterationCounter==3)
{
// We will see the consttructiona and destruction messages from this local (inside the "if" block inside the "loop" function) object. Objet construction http://www.cplusplus.com/doc/tutorial/classes/
HelloWorld hw2("constructing object", 2);
hw2.Salute("Jones");
} // Objet hw2 destruction http://www.cplusplus.com/doc/tutorial/classes/

//Let's show that object hw0 is alive
hw0.Salute("Pepe");

SerialUSB.print("ending iteration #");
SerialUSB.println(iterationCounter++); // first cpunter is printed, then incremented.
} // Objet hw1 destruction http://www.cplusplus.com/doc/tutorial/classes/
} // Program end. Objet hw0 destruction http://www.cplusplus.com/doc/tutorial/classes/
[/sourcecode]

domingo, 16 de junio de 2013

Robotis CM-900 in Toss Mode and querying connected sensors

CM-900 is a very cheap and tiny Robotis Dynamixel controller based in the STM32 ARM 32 bits microcontroller. Here you can find several links to documents.

CM-900_Size

I think it's ideal as a controller managed with, for example, a Raspberry Pi or a Pandaboard, so I have created a program which can be managed externally to control Dynamixel items (AX-12, AX-S1), Toss Mode, and sensors connected to the CM-900 with a simple protocol similar but simpler than the Dynamixel protocol:

[Headers] [ID] [Command code] [Nº Params] [Param1] [Param2] [ParamN]

Toss Mode works like USB2Dynamixel, but with this program in addition you can get sensor vales.

Toss Mode was a software feature, at least since CM-5, which allows you to use the elements connected to the controller from another device, usually a more powerful computer. What it receives from the USB or serial is sent to the Dynamixel bus, and whatever it receives from Dynamyxel bus is sent to the serial or USB connection.

Example for blinking twice: { 0xFF, 0xFF, 90, 1, 1, 2 }

Headers: 0xFF 0xFF

ID: 90

Command code: 1

Number of parameters: 1

Parameter 1: 2

Example for reading ultrasonic sensor (HC-SR04) : { 0xFF, 0xFF, 90, 2, 0 }

[sourcecode language="CPP"]

void MainWindow::testCM900_Sensor_US()
{
const int size=5;
byte buffer2[size] = { 0xFF, 0xFF, 90, 2, 0 };
pDynComm->rawWrite(buffer2, size);
}
[/sourcecode]

[caption id="attachment_1753" align="alignleft" width="320"]Ultrasonic sensor hc-sr04 Ultrasonic sensor hc-sr04[/caption]

And here the file with the code for Robotis CM-9 IDE version 0.9.9. You also need to copy Prof. Mason library for ultrasonic sensor to CM 900 IDE libraries folder. Althought it i still a beta version, I think it works ok. Asigning true to these variables, the messages for debugging are sent either to USB connection o Serial2 (connecting Zigbee is the easy option):

[sourcecode language="CPP"]
bool debugOutputSerial2On=true;
bool debugOutputOn=false;
[/sourcecode]

Arduino LCD 1602 (16x2) display

Another little pearl from www.dx.com is the Arduino compatible LCD 1602 (16 characters each of the 2 rows) display:

20130616_091530

It's really cheap, 6$/4.5€, works very fine and it's easy to use! I will use as a handy debug display and little dashboard (it has 6 buttons at the bottom) while on field robots debugging, but this wioll be a near post with the sourcecode (that also will be a order receiver to program a Rapsberry Pi to control a robot using and Arduino Funduino Duemilanove.)

Arduino LCD text

Two easy examples from the Arduino IDE wondeful examples, it's important that you notice that the initialization sentence should be:

LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

The hello world
[sourcecode language="C"]
/*
LiquidCrystal Library - Hello World

Demonstrates the use a 16x2 LCD display. The LiquidCrystal
library works with all LCD displays that are compatible with the
Hitachi HD44780 driver. There are many of them out there, and you
can usually tell them by the 16-pin interface.

This sketch prints "Hello World!" to the LCD
and shows the time.

The circuit:
* LCD RS pin to digital pin 12
* LCD Enable pin to digital pin 11
* LCD D4 pin to digital pin 5
* LCD D5 pin to digital pin 4
* LCD D6 pin to digital pin 3
* LCD D7 pin to digital pin 2
* LCD R/W pin to ground
* 10K resistor:
* ends to +5V and ground
* wiper to LCD VO pin (pin 3)

Library originally added 18 Apr 2008
by David A. Mellis
library modified 5 Jul 2009
by Limor Fried (http://www.ladyada.net)
example added 9 Jul 2009
by Tom Igoe
modified 22 Nov 2010
by Tom Igoe

This example code is in the public domain.

http://www.arduino.cc/en/Tutorial/LiquidCrystal
*/

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
//LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

void setup() {
// set up the LCD's number of columns and rows:
lcd.begin(16, 2);
// Print a message to the LCD.
lcd.print("Te, amo, Nuriitaa!");
}

void loop() {
// set the cursor to column 0, line 1
// (note: line 1 is the second row, since counting begins with 0):
lcd.setCursor(0, 1);
// print the number of seconds since reset:
lcd.print(millis()/1000);
}
[/sourcecode]

Testing buttons
[sourcecode language="C"]
//Sample using LiquidCrystal library
#include <LiquidCrystal.h>

/*******************************************************

This program will test the LCD panel and the buttons
Mark Bramwell, July 2010

********************************************************/

// select the pins used on the LCD panel
LiquidCrystal lcd(8, 9, 4, 5, 6, 7);

// define some values used by the panel and buttons
int lcd_key = 0;
int adc_key_in = 0;
#define btnRIGHT 0
#define btnUP 1
#define btnDOWN 2
#define btnLEFT 3
#define btnSELECT 4
#define btnNONE 5

// read the buttons
int read_LCD_buttons()
{
adc_key_in = analogRead(0); // read the value from the sensor
// my buttons when read are centered at these valies: 0, 144, 329, 504, 741
// we add approx 50 to those values and check to see if we are close
if (adc_key_in > 1000) return btnNONE; // We make this the 1st option for speed reasons since it will be the most likely result
if (adc_key_in < 50) return btnRIGHT;
if (adc_key_in < 195) return btnUP;
if (adc_key_in < 380) return btnDOWN;
if (adc_key_in < 555) return btnLEFT;
if (adc_key_in < 790) return btnSELECT;
return btnNONE; // when all others fail, return this...
}

void setup()
{
lcd.begin(16, 2); // start the library
lcd.setCursor(0,0);
lcd.print("Push the buttons"); // print a simple message
}

void loop()
{
lcd.setCursor(9,1); // move cursor to second line "1" and 9 spaces over
lcd.print(millis()/1000); // display seconds elapsed since power-up


lcd.setCursor(0,1); // move to the begining of the second line
lcd_key = read_LCD_buttons(); // read the buttons

switch (lcd_key) // depending on which button was pushed, we perform an action
{
case btnRIGHT:
{
lcd.print("RIGHT ");
break;
}
case btnLEFT:
{
lcd.print("LEFT ");
break;
}
case btnUP:
{
lcd.print("UP ");
break;
}
case btnDOWN:
{
lcd.print("DOWN ");
break;
}
case btnSELECT:
{
lcd.print("SELECT");
break;
}
case btnNONE:
{
lcd.print("NONE ");
break;
}
}
}
[/sourcecode]

miércoles, 12 de junio de 2013

Robotis CM-900 as a tosser for Dynamixel commands

CM-900 is really tiny and cheap, so is perfect to use as communication bridge between any computer (Raspberry Pi, Pandaboard, etc. included, of course) and the Dynamixel bus. Whatever it receives from the Serial USB (usually commands and queries) is sent to the Dynamixel bus, and what it receives from the Dynamixel bus is sent to the SerialUSB (usually answers)

Here is the source code of the little program for CM-900 IDE:

[sourcecode language="C"]
int counter;
bool onlyOnceHappened;

void blinkOnce()
{
digitalWrite(BOARD_LED_PIN, LOW);
delay_us(100);
digitalWrite(BOARD_LED_PIN, HIGH);
}

void setup()
{
pinMode(BOARD_LED_PIN, OUTPUT);

onlyOnceHappened=false;
counter=0;

//USB Serial initialize
SerialUSB.begin();
// SerialUSB.attachInterrupt(USBDataReceived);
//DXL initialize
Dxl.begin(1);
}

byte aByte=0;
uint8 aUint8;

void loop()
{
// SerialUSB.println (counter++);

if (onlyOnceHappened==false)
{
blinkOnce();
onlyOnceHappened=true;
delay (3000); //Some time to the user to activate the monitor/console
SerialUSB.println ("v1.1.1 Orders receiver started");
}

if (SerialUSB.available())
{
aUint8=SerialUSB.read();
blinkOnce();
Dxl.writeRaw(aUint8);
// delay(20);
}

if (Dxl.available())
{
aByte=Dxl.readRaw();
blinkOnce();
SerialUSB.write(aByte);
// delay(20);
}
}

[/sourcecode]

Here the file.

In the next post I will include an improved version that could read sensors connected to the CM-900, "expanding" the Dynamixel protocol.

martes, 28 de mayo de 2013

[UPDATED] A simple but pretty complete Linux C++ example for Bioloid

[Jun 12, 2013, Some source code typos fixed and code updated]:

.
.
.
.
.

[sourcecode language="cpp"]
bool nonValidOption(int option)
{
return (optionMaxOption);
}
[/sourcecode]

This is a very simple but pretty complete example, trying to use the least possible dependencies. I have tested in a just installed Ubuntu and you only needed the AXControl library (I created and use it because then there were no Robotis library and because it can use serial port, Dynamixel bus, Zigbee, BT (Robotis or other adaptors)

It use the terminal, no QT, to avoid library dependencies. But you should add the AXControl_v2 lib files to your /usr/lib folder as administrator (sudo). Click here if you want one unique executable for Linux (tested with Linux Mint 14) using these sources files

When executed, it shows the values configured in the HexaWheels.conf file and any problem it founds, like SerialPort2Dynamixel.open(ss)=> [Serial port NOT opened]:


ubuntu@A3820 ~/projects/trunk/bioloid/Herramientas/CommandLine $ ./commandline
init to load configuration(ss)=> [./HexaWheels.conf]
Configuration file=> (ss)=> [./HexaWheels.conf]
Tiempo_Espera_ms(ss)=> [35]
Tiempo_Espera_Sensores_ms(ss)=> [60]
Nombre_Puerto_Serie(ss)=> [/dev/ttyUSB0]
Baudios_Puerto_Serie(ss)=> [1000000]
Motion_File_Name(ss)=> [HexaWheels_2.0.mtn]
UmbralContacto(ss)=> [550]
UmbralDeteccion(ss)=> [200]
loadConfigurationValues: (si)=> [134529476]
getIntValue: (ss)=> [Tiempo_Espera_ms]
getIntValue: (ss)=> [Tiempo_Espera_Sensores_ms]
getIntValue: (ss)=> [Baudios_Puerto_Serie]
getStringValue: (ss)=> [Nombre_Puerto_Serie]


Device /dev/ttyUSB0, Speed B1000000
SerialPort2Dynamixel.open(ss)=> [Serial port NOT opened]
SerialPort2Dynamixel.open, serialPortName(ss)=> [/dev/ttyUSB0]
SerialPort2Dynamixel.open, baudRate(si)=> [4104]
I can't open DynamixelCommunication, name: (ss)=> [/dev/ttyUSB0]
terminate called after throwing an instance of 'std::exception*'
Aborted

If it can connect an there are no problem you should see:


ubuntu@A3820 ~/projects/trunk/bioloid/Herramientas/CommandLine $ ./commandline
init to load configuration(ss)=> [./HexaWheels.conf]
Configuration file=> (ss)=> [./HexaWheels.conf]
Tiempo_Espera_ms(ss)=> [35]
Tiempo_Espera_Sensores_ms(ss)=> [60]
Nombre_Puerto_Serie(ss)=> [/dev/ttyUSB0]
Baudios_Puerto_Serie(ss)=> [1000000]
Motion_File_Name(ss)=> [HexaWheels_2.0.mtn]
UmbralContacto(ss)=> [550]
UmbralDeteccion(ss)=> [200]
loadConfigurationValues: (si)=> [134529476]
getIntValue: (ss)=> [Tiempo_Espera_ms]
getIntValue: (ss)=> [Tiempo_Espera_Sensores_ms]
getIntValue: (ss)=> [Baudios_Puerto_Serie]
getStringValue: (ss)=> [Nombre_Puerto_Serie]


Device /dev/ttyUSB0, Speed B1000000
SerialPort2Dynamixel.open, serialPortName(ss)=> [/dev/ttyUSB0]
SerialPort2Dynamixel.open, baudRate(si)=> [4104]
V01
2.- Toggle AX-12 LED
3.- Query AX-12
4.- Move AX-12
5.- Torque AX-12
6.- Query CM-510 sensor
7.- Show menu
8.- Beep
9.- Quit
Select option (2-9)

[sourcecode language="cpp"]

/*------------------------------------------------------------------------------*\
* This source file is subject to the GPLv3 license that is bundled with this *
* package in the file COPYING. *
* It is also available through the world-wide-web at this URL: *
* http://www.gnu.org/licenses/gpl-3.0.txt *
* If you did not receive a copy of the license and are unable to obtain it *
* through the world-wide-web, please send an email to *
* siempre.aprendiendo@gmail.com so we can send you a copy immediately. *
* *
* @category Robotics *
* @copyright Copyright (c) 2011 Jose Cortes (<a href="https://plus.google.com/105007891378677151287/about">https://plus.google.com/105007891378677151287/about</a>) *
* @license http://www.gnu.org/licenses/gpl-3.0.txt GNU v3 Licence *
* *
\*------------------------------------------------------------------------------*/

#include "stdafx.h"
#include
#include "BasicSystem.h"
#include "Util.h"

using namespace std;

class UI
{
public:
static const int OptionQuit=8;

UI(MyBasicSystem::BasicSystem& aMySystem) : mySystem(aMySystem) {}

void showMenu();
int selectOption();
bool executeSelectedOption(int selected);
void doBeep();

private:
MyBasicSystem::BasicSystem mySystem;

static const int OptionSetLEDOnOff=1;
static const int OptionQueryAX12=2;
static const int OptionMoveAX12=3;
static const int OptionTorqueAX12=4;
static const int OptionQuerySensor=5;
static const int OptionShowMenu=6;
static const int OptionBeep=7;

static const int MinOption=OptionSetLEDOnOff;
static const int MaxOption=OptionQuit;

bool validRange(int value, int MinValue, int MaxValue);
bool nonValidOption(int option);
int getPosition();
int getId();
int getSensorPort();
void doGetPosition();
void doSetPosition();
void doQuerySensor();
void doSetLEDOnOff();
void doSetTorqueOnOff();

};

void UI::showMenu()
{
cout << "V02" << endl;

cout << OptionSetLEDOnOff << ".- Toggle AX-12 LED" << endl;
cout << OptionQueryAX12 << ".- Query AX-12" << endl;
cout << OptionMoveAX12 << ".- Move AX-12" << endl;
cout << OptionTorqueAX12 << ".- Torque AX-12" << endl;
cout << OptionQuerySensor << ".- Query CM-510 sensor" << endl;
cout << OptionShowMenu << ".- Show menu" << endl;
cout << OptionBeep << ".- Beep" << endl;
cout << OptionQuit << ".- Quit" << endl;
}

bool UI::nonValidOption(int option)
{
return (optionMaxOption);
}

int UI::selectOption()
{
int option=-1;

while (nonValidOption(option))
{
cout << "Select option (" << MinOption << "-" << MaxOption << ")" << endl; cin >> option;
if (nonValidOption(option))
{
cout << endl;
cout << endl;
cout << "(" << option << ") is NOT a valid option" << endl; } } return option; } bool UI::validRange(int value, int MinValue, int MaxValue) { return (value>=MinValue && value<=MaxValue);
}

int UI::getPosition()
{
int position=0;

do
{
cout << "Type a value between 0 and 1023 to set the AX-12 in that position" << endl; cin>>position;

}while(!validRange(position, 0, 1023));

cout << "Position:" << position << endl; return position; } int UI::getId() { int ax12Id=1; do { puts ("Type the ID of the AX-12 to use, a value between 1 and 18, "); cin >> ax12Id;

}while(!validRange(ax12Id, 1, 18));

cout << "AX12 Id:" << ax12Id << endl; return ax12Id; } int UI::getSensorPort() { int sensorPort=1; do { puts ("Type the sensor Port to read, a value between 1 and 6, "); cin >> sensorPort;

}while(!validRange(sensorPort, 1, 6));

cout << "Sensor Port number:" << sensorPort << endl;

return sensorPort;
}

void UI::doBeep()
{
cout << "Beep" << endl;
mySystem.dynamixelCommunication.sendOrder(100, AXS1_Buzzer, (byte) DO, (short) 500);
Sleep (2);
mySystem.dynamixelCommunication.sendOrder(200, MyCommunications::Beep, (byte) 5);
}

void UI::doGetPosition()
{
int ax12Id=getId();

int position = mySystem.dynamixelCommunication.readValue(ax12Id, MyCommunications::PresentPosition);
cout << "the position is: [" << position << "] " << endl << endl << endl;
}

void UI::doSetPosition()
{
int ax12Id=getId();
int position=getPosition();

mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::GoalPosition,(short) position);

}

void UI::doQuerySensor()
{
int sensorPort=getSensorPort();

int value=mySystem.dynamixelCommunication.readSensorValue (200, ReadCM510SensorRaw, sensorPort);
cout << "the sensor reads: [" << value << "] " << endl << endl << endl;
}

void UI::doSetLEDOnOff()
{
byte lByte=0, hByte=0;
int ledValue;

int ax12Id=getId();

ledValue=mySystem.dynamixelCommunication.readValue(ax12Id, MyCommunications::LED);
Hex::toHexHLConversion(ledValue, hByte, lByte);

bool onOff=false;
if (lByte!=0)
onOff=true;

cout << "The LED is: [" << (onOff?"on":"off") << "], putting it: [" << (onOff?"Off":"on") << "] " << endl << endl << endl;
mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::LED, byte(onOff?0:1));
}

void UI::doSetTorqueOnOff()
{
byte lByte=0, hByte=0;
int ax12Id=getId();

int torque=mySystem.dynamixelCommunication.readValue(ax12Id, MyCommunications::Torque);
Hex::toHexHLConversion(torque, hByte, lByte);
bool onOff=(lByte!=0?true:false);

cout << "The Torque is: [" << (onOff?"on":"off") << "], putting it: [" << (onOff?"Off":"on") << "] " << endl << endl << endl;

mySystem.dynamixelCommunication.sendOrder(ax12Id, MyCommunications::Torque,(byte) (onOff?0:1));
}

bool UI::executeSelectedOption(int option)
{
bool isOk=true;
cout << endl;
cout << endl;

cout << "Selected option: [" << option << "] " << endl;

switch(option)
{
case OptionSetLEDOnOff:
doSetLEDOnOff();
break;
case OptionQueryAX12:
doGetPosition();
break;
case OptionMoveAX12:
doSetPosition();
break;
case OptionTorqueAX12:
doSetTorqueOnOff();
break;
case OptionQuerySensor:
doQuerySensor();
break;
case OptionShowMenu:
showMenu();
break;
case OptionBeep:
doBeep();
break;
}

return isOk;
}

int _tmain(int argc, _TCHAR* argv[])
{
cout << "AXControl_v2_VS_CPP test v0" << endl;

bool quit=false;
MyBasicSystem::BasicSystem mySystem;
UI ui(mySystem);
do
{
ui.showMenu();
int selected=ui.selectOption();
if (selected==ui.OptionQuit)
quit=true;
ui.executeSelectedOption(selected);
}while (!quit);

mySystem.dynamixelCommunication.close();

return 0;
}

[/sourcecode]

lunes, 15 de abril de 2013

Cheapest Smart Car Robot: parts, examples of use and documentation

[caption id="attachment_1552" align="aligncenter" width="600"]Ultrasonic Smart Car Kit Ultrasonic Smart Car Kit[/caption]

[caption id="attachment_1746" align="alignleft" width="150"]Funduino Arduino DuemilaNove clon Funduino Arduino DuemilaNove clon[/caption]

It's really cheap but it does not include any documentation; but don't panic, all you will need can be found on Internet. And now, the main electronic components: the microcontroller, the dual motor driver, the ultrasonic sensor and the servo:

The microcontroller brain is a Funduino (Arduino Duemilanove clone), and as far I've used it (and as other buyer said is fully, at least for software, compatible). Here we will not have any problem because there are a lot of documentation about Arduino and Duemilanove.

A simple hello world example (here the file)

[sourcecode language="c"]

// Blinking LED

int ledPin = 13;                 // LED connected to digital pin 13

void setup()
{
Serial.begin(57600);
printf (&amp;amp;quot;Setup/n/l&amp;amp;quot;);
Serial.println(&amp;amp;quot;Hello world!&amp;amp;quot;);
pinMode(ledPin, OUTPUT);      // sets the digital pin as output
}

void loop()
{
printf (&amp;amp;quot;2009&amp;amp;quot;);
Serial.println(&amp;amp;quot;2009&amp;amp;quot;);
digitalWrite(ledPin, HIGH);   // sets the LED on
delay(1000);                  // waits for a second
digitalWrite(ledPin, LOW);    // sets the LED off
delay(1000);                  // waits for a second
}

[/sourcecode]

[caption id="attachment_1748" align="alignleft" width="150"]Dual_H-Bridge_Motor_Driver Dual_H-Bridge_Motor_Driver[/caption]

But to control the two motors this kit use an Dual H-Bridge motor driver (L298). Here (read the Drive Two DC Motors section) you can find a lot of useful documentation and examples,  and  here you can find also more information, specially about electronics.

Here the file with the example

[sourcecode language="c"]
int ENA=5;//connected to Arduino's port 5(output pwm)
int IN1=2;//connected to Arduino's port 2
int IN2=3;//connected to Arduino's port 3
int ENB=6;//connected to Arduino's port 6(output pwm)
int IN3=4;//connected to Arduino's port 4
int IN4=7;//connected to Arduino's port 7
void setup()
{
Serial.begin(57600);
Serial.println(&amp;amp;quot;Two motors&amp;amp;quot;);
pinMode(ENA,OUTPUT);//output
pinMode(ENB,OUTPUT);
pinMode(IN1,OUTPUT);
pinMode(IN2,OUTPUT);
pinMode(IN3,OUTPUT);
pinMode(IN4,OUTPUT);
digitalWrite(ENA,LOW);
digitalWrite(ENB,LOW);//stop driving
digitalWrite(IN1,LOW);
digitalWrite(IN2,HIGH);//setting motorA's directon
digitalWrite(IN3,HIGH);
digitalWrite(IN4,LOW);//setting motorB's directon
}
void loop()
{
analogWrite(ENA,255);//start driving motorA
analogWrite(ENB,255);//start driving motorB
delay(3000);
analogWrite (IN1,0);//stop driving motorA
analogWrite (IN2,0);//stop driving motorB

analogWrite (IN3,0);//stop driving motorA
analogWrite (IN4,0);//stop driving motorB

delay (3000);

int ledPin = 13;
while (1)
{
digitalWrite(ledPin, HIGH);   // sets the LED on
delay(1000);                  // waits for a second
digitalWrite(ledPin, LOW);    // sets the LED off
delay(000);
}
&amp;amp;lt;pre&amp;amp;gt;[/sourcecode]

[caption id="attachment_1753" align="alignleft" width="150"]Ultrasonic sensor hc-sr04 Ultrasonic sensor hc-sr04[/caption]

The HC-SR04 ultrasonic distance sensor, example of use (here the file):

[sourcecode language="c"]

#define trigPin 9
#define echoPin 11

void setup() {
Serial.begin (115200);
pinMode(trigPin, OUTPUT);
pinMode(echoPin, INPUT);
}

void loop() {
int duration, distance;
digitalWrite(trigPin, HIGH);
delayMicroseconds(1000);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = (duration/2) / 29.1;
if (distance &amp;amp;gt; 400 || distance &amp;amp;lt; 0){
Serial.println(&amp;amp;quot;Out of range&amp;amp;quot;);
}
else {
Serial.print(distance);
Serial.println(&amp;amp;quot; cm&amp;amp;quot;);
}
delay(500);
}

[/sourcecode]


[caption id="attachment_1755" align="alignleft" width="150"]TowerPro micro servo SG90 TowerPro micro servo SG90[/caption]

And the Tower PRO SG-90 micro servo (and here the file with the example):

[sourcecode language="c"]
// Sweep
// by BARRAGAN &amp;amp;lt;http://barraganstudio.com&amp;amp;gt;
// This example code is in the public domain.

#include &amp;amp;lt;Servo.h&amp;amp;gt;

Servo myservo;  // create servo object to control a servo
// a maximum of eight servo objects can be created

int pos = 0;    // variable to store the servo position

void setup()
{
myservo.attach(3);  // attaches the servo on pin 3 to the servo object
}

void loop()
{
for(pos = 0; pos &amp;amp;lt; 180; pos += 1)  // goes from 0 degrees to 180 degrees
{                                  // in steps of 1 degree
myservo.write(pos);              // tell servo to go to position in variable 'pos'
delay(15);                       // waits 15ms for the servo to reach the position
}
for(pos = 180; pos&amp;amp;gt;=1; pos-=1)     // goes from 180 degrees to 0 degrees
{
myservo.write(pos);              // tell servo to go to position in variable 'pos'
delay(15);                       // waits 15ms for the servo to reach the position
}
}
[/sourcecode]

Soon I will add an LCD display with 6 buttons

CM-900 Robotis IDE more programming examples

I've started to program CM-900 "translating" the example from the C programming tutorial for CM-510

CM900_with_its parts_names

You can get more information at robotsource.org CM-900 community circle and the CM-900 e-manual. There you can find:

- Quick start guide

- Presentation Workshop

- Arduino based IDE to program it very easily (examples included)

- Source code and instructions

- Using other servos

- Interfacing sensors

I already have "translated" two examples: a simple "hello world" like where a servo is move to 2 different positions and another where the servo id and position is asked and after entered the data the servo is positionated in the typed position, validating that id and position are in range.

The "hello World " example (here the zipped file):

[sourcecode language="c"]
#define P_GOAL_POSITION_L     30
#define P_MOVING              46

int counter;
int onlyOnceHappened;

void setup()
{
//USB Serial initialize

onlyOnceHappened=0;
counter=0;

SerialUSB.begin();
Dxl.begin(1);
delay (5000);
SerialUSB.println("Setup");
}

void loop()
{

delay (3000);
SerialUSB.print("loop");
SerialUSB.println(counter);
counter++;
delay(1000);

if (onlyOnceHappened==0)
{
onlyOnceHappened=1;
SerialUSB.println("Hello, World");
}

int id=8;

SerialUSB.println ("Simple example #0");

SerialUSB.print ("Perform movement 1 with the AX-12:");
SerialUSB.println (id);
byte bMoving = Dxl.readByte( id, P_MOVING);
byte CommStatus = Dxl.getResult();
if( CommStatus == COMM_RXSUCCESS )
Dxl.writeWord( id, P_GOAL_POSITION_L, 511 );
else
SerialUSB.println ("CommStatus IS NOT COMM_RXSUCCESS");

SerialUSB.println ("Pause half a second");
delay (500); // half-second pause

SerialUSB.println ("Beep!");
//buzzOn (100); // beep

SerialUSB.println ("Pause for a second");
delay (1000); // pause for 1 second

SerialUSB.print ("Perform movement 2 with the AX-12: ");
SerialUSB.println (id);

Dxl.writeWord( id, P_GOAL_POSITION_L, 611 );

SerialUSB.println ("End");

}
[/sourcecode]

Asking Id and Position example, (here the zipped file)

[sourcecode language="c"]

int counter;
bool onlyOnceHappened;

int id;
int position;

bool debugOutputOn;
char charReaded;

void debugOutputUSB(char *buffer, bool newlineAfterMessage)
{
if (debugOutputOn)
{
if (newlineAfterMessage)
SerialUSB.println(buffer);
else
SerialUSB.print(buffer);
}
}

void debugOutputUSB(int value, bool newlineAfterMessage)
{
if (debugOutputOn)
{
if (newlineAfterMessage)
SerialUSB.println(value);
else
SerialUSB.print(value);
}
}

void debugOutputPairUSB(char *buffer, int value)
{
if (debugOutputOn)
{
SerialUSB.println ("");
SerialUSB.print(buffer);
SerialUSB.println(value);
}
}

void debugOutputPairUSB(char *buffer1, char *buffer2)
{
if (debugOutputOn)
{
SerialUSB.println ("");
SerialUSB.print(buffer1);
SerialUSB.println(buffer2);
}
}

void setup()
{
//USB Serial initialize

onlyOnceHappened=false;
counter=0;
debugOutputOn=false;

SerialUSB.begin();
Dxl.begin(1);
delay (3000);

debugOutputUSB("Setuped", true);
}

void checkIfDebugOn()
{
SerialUSB.print("Put debug ON?, y/n");
charReaded=SerialUSB.read();

if (charReaded=='y' || charReaded=='Y')
debugOutputOn=true;
else
debugOutputOn=false;

debugOutputPairUSB ("DebugPut is:", debugOutputOn);
}

void loop()
{
delay (1500);
SerialUSB.println ("Simple example #1");

if (onlyOnceHappened==false)
{
onlyOnceHappened=true;
checkIfDebugOn();
}

debugOutputPairUSB  ("Loop: ",counter);
counter++;
delay(500);

debugOutputUSB("Starting loop", true);

while(true) // we'll repeat this loop forever
{
id=getId(); // get the ID of the AX-12 that we want to move
position=getPosition(); // get the goal position

Dxl.writeWord( id, P_GOAL_POSITION_L, position); // sent the command to the Dynamixel
debugOutputUSB ("Dxl.writeWorded", true);
}
}
// I have created a simple ayoi because I have problem compiling atoi
int myatoi(char *buffer)
{
int len=strlen(buffer)-2;
int value=0;
int i=0;
int base=0;
int number=0;

for (i=len;i>=0;i--)
{
number=int(buffer[i])-int('0');

debugOutputPairUSB ("buffer[i]: ", int(buffer[i]));

if (i==len)
{
value=number;
}
else
{
value+=base * number;
}

debugOutputPairUSB ("i: ",i);
debugOutputPairUSB ("number: ", number);
debugOutputPairUSB("base: ", base);
debugOutputPairUSB("valor: ", value);

if (base==0)
{
base=10;
}
else
base=base*10;
}

return value;
}

bool isValid(int value, int MinValue, int MaxValue)
{
return (value>=MinValue && value<=MaxValue);
}

void readString(char *bufferParameter)
{
int i=0; // We'll use this variable as index of the buffer where we will store data

do
{
bufferParameter[i]=(char) SerialUSB.read(); // it store the read character in the i position of bufferParameter
SerialUSB.print(bufferParameter[i]); // showing it
if (bufferParameter[i]=='\b') // if Backspace was pressed
i--; // it goes to the previous position, rewritting the previoulsy typed character
else //
i++; // it will write in the next position
//    SerialUSB.println(int(bufferParameter[i-1]));
}while(bufferParameter[i-1]!=10); // while the last values is not INTRO. The symmbol ! represents the logical operator NOT

bufferParameter[i]=0; // A NULL (0, zero) is necessary in the last position of any string
}

/*
It read an string, it's converted to integer and returned
*/
int readInteger(char *bufferParameter)
{
//  return SerialUSB.parseInt();

readString(bufferParameter);

//  int valor=int(bufferParameter[0]-int('0'));
debugOutputPairUSB ("Leido: ", bufferParameter);
int valor=myatoi(bufferParameter);

debugOutputPairUSB ("Valor leido: ", valor);

return valor;
}

int getId()
{
/*
We define an array enough large, 256 bytes (characters). Probably it's enough with 4 bytes, but if we type more than the defined size we will get an error*/
char buffer[256];

/*
And we define another integer variable, it's very advisable to asign a value in the definition, in this case we assign the minimun value, 1*/
int ax12Id=1;

do
{ // starting the loop
SerialUSB.println ("Enter the ID of the AX-12 that you wwant to move, between 1 y 18: ");
SerialUSB.print("Id:");
ax12Id=readInteger(buffer); // this function will read from what we type in the keyboard
//// exclamation (!) is the NOT logical operator. It will repeat the loop while the value is not valid
}while(!isValid(ax12Id, 1, 18));

// Showing the typed value
SerialUSB.println(" ");
SerialUSB.print("AX12 ID:");
SerialUSB.println(ax12Id);

return ax12Id;
}

int getPosition()
{
char buffer[256];
int position=0;

do
{
SerialUSB.println ("Enter a value between 0 and 1023 as the goal position");
SerialUSB.print ("Position:");
position=readInteger(buffer);
}while(!isValid(position, 0, 1023));

// Showing the typed value
SerialUSB.println(" ");
SerialUSB.print("Position:");
SerialUSB.println(position);

return position;
}

[/sourcecode]